Research on interactive influences of parameters on T-shaped cold ring rolling by $3 \mathrm{~d}-\mathrm{FE}$ numerical simulation

Lanyun Li, He Yang*, Lianggang Guo, Zhichao Sun
College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China

(Manuscript Received May 31, 2007; Revised August 30, 2007; Accepted September 30, 2007)

Abstract

Cold ring rolling is a much complex physical process with multi-factors. Two forming parameters, the feed rate of mandrel and the rotational speed of main roll, affect the quality of deformed ring significantly and the feed amount per revolution of ring in the form of their ratio. By their ratio, the interactive effects of the two forming parameters on the T-shaped cold ring rolling process are explored through 3D-FEM in Abaqus software. The results show: firstly the study objects (roll force, growth rate of diameter, degree of inhomogeneous deformation, filling capability of groove, average side spread and fishtail coefficient) are almost invariable if the two parameters are increased (or decreased) proportionally; secondly whether the ratio is changed by the feed rate of mandrel or by the rotational speed of main roll, the variation of each study object with the ratio is approximately the same; thirdly the increase of the ratio is beneficial to the growth of diameter and the restrictions of inhomogeneous deformation, average side spread and fishtail coefficient, but it causes the roll force to increase and the filling capability of groove to decrease.

Keywords: Cold ring rolling process; Feed rate of mandrel; Rotational speed of main roll; Abaqus

1. Introduction

Cold ring rolling is an advanced continuous and local deforming process to manufacture seamless ring parts. The research and development of precise cold ring rolling technology has become an important subject in advanced plastic processing field. During the process (as shown in Fig. 1), the rotation of main roll drives the ring blank through the roll gap, which is decreasing all along due to the advancing mandrel. It can be seen that the two important forming parameters, f and n_{1}, affect interactively the metal forming state in the roll gap. In order to further reveal the deformation mechanism of cold ring rolling process, it is necessary to investigate the interactive effects of f and n_{1} on the process. However,

[^0]much research on the ring rolling process was carried out by experiments [1], theories [2-3] and finite techniques [4-7] during the past years. Very little attention was paid to this field. And due to the complexity of the process, it is obviously difficult to deeply understand the process purely by using analytical and experimental methods.

Therefore, in this study, the flowchart of Δh, which is the key factor of metal forming state in the roll gap, is built first. It is found that Δh is affected by f and n_{1} in the form of f / n_{1}. Then, by using the 3D-FEM, Abaqus, the interactive effects of f and n_{1} on the T -shaped cold ring rolling process are investigated from the following three aspects in terms of $\bar{f}\left(\bar{f}=f / n_{1}\right)$.
(1) The variations of $R F, \Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$ when f and n_{1} are increased proportionally to keep \bar{f} unchanged;

Fig. 1. Sketch of ring rolling process.
(2) The variations of $R F, \Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$ with \bar{f} when \bar{f} is changed by f but n_{1} is unchanged;
(3) The variations of the same objects when \bar{f} is changed by n_{1} but f is unchanged.

2. Flowchart of feed amount per revolution of ring

Assuming that the ring blank just rotates N revolutions when the cold ring rolling process is completed, we can get

$$
\begin{align*}
& \Delta h_{i}=f \cdot \Delta t_{i}=f \cdot \frac{2 \pi R_{i-1}}{v_{R}},(i=1,2,3, \cdots, N) . \tag{1}\\
& H_{i}=H_{i-1}-\Delta h_{i}=H_{0}-\sum_{j=1}^{i} \Delta h_{j},(i=1,2,3, \cdots, N) . \tag{2}
\end{align*}
$$

Assuming no slippage between the ring blank and main roll, we can obtain that v_{R} is equal to v_{D}, i.e.,

$$
\begin{equation*}
v_{R}=v_{D}=2 \pi \cdot n_{1} \cdot R_{D},(i=1,2,3, \cdots, N) . \tag{3}
\end{equation*}
$$

Substituting Eq. (3) into Eq. (1), we can have

$$
\begin{equation*}
\Delta h_{i}=\frac{R_{i-1}}{R_{D}} \cdot \frac{f}{n_{1}},(i=1,2,3, \cdots, N) . \tag{4}
\end{equation*}
$$

Assuming no side spread and volume constancy in cold ring rolling operation, we can have

$$
\begin{align*}
& \pi\left(R_{i}^{2}-r_{i}^{2}\right)=\pi\left(R_{0}^{2}-r_{0}^{2}\right),(i=1,2,3, \cdots, N) . \tag{5}\\
& r_{i}=R_{i}-H_{i},(i=1,2,3, \cdots, N) . \tag{6}\\
& H_{0}=R_{0}-r_{0} . \tag{7}\\
& R_{i}=\frac{1}{2}\left[\left(R_{0}+r_{0}\right) \frac{H_{0}}{H_{i}}+H_{i}\right],(i=1,2,3, \cdots, N) . \tag{8}
\end{align*}
$$

Fig. 2. Flowchart for Δh_{i}.
According to Eqs. (2), (4), (7) and (8), the flowchart for calculating Δh_{i} can be obtained, as shown in Fig. 2. It can be seen obviously that f and n_{1} affect Δh_{i} in the form of f / n_{1}. In order to conveniently investigate the interactive influences of f and n_{1} on the cold ring rolling process, the ratio of f to n_{1}, which is marked as \bar{f}, is introduced into this study.

3. 3D-FE model of cold ring rolling process and determination of the range of \bar{f} for modeling

3.1 3D-FE model of cold ring rolling

The authors have built a 3D-FE model of cold ring rolling in Abaqus software as shown in Fig. 3. In the model, the main roll, mandrel and guide rolls are treated as rigid bodies. The guide rolls are controlled by the hydraulic adjustment mechanism, so the problem of guide roll control in ring rolling process with complicated section ring is solved. For T-shaped ring rolling process, the mesh density around the groove is considered higher to improve the deformation accuracy in this area. The model has been validated with respect to the side spread in plane ring rolling process and cross-sectional configuration of deformed ring in T -shaped ring rolling process [9].

The material of ring blank used in the model is Aalloy HE30. Its density, Young modulus and Poisson ratio are $2700 \mathrm{~kg} / \mathrm{m}^{3}, 69 \mathrm{GPa}$ and 0.33 , respectively, and the constitutive equation is as follows [4].

$$
\begin{cases}\bar{\sigma}=69 \bar{\varepsilon}^{e}(\mathrm{GPa}) & \bar{\varepsilon} \leq 0.003 \\ \vec{\sigma}=231.6\left(1.0+3001.8 \bar{\varepsilon}^{p}\right)^{0.0653}(\mathrm{MPa}) & \bar{\varepsilon}>0.003\end{cases}
$$

where $\bar{\sigma}$ is the true stress, $\bar{\varepsilon}^{e}$ and $\bar{\varepsilon}^{p}$ are the true elastic and plastic strain, respectively, and $\bar{\varepsilon}$ is the true total strain.
The outer and inner radii and axial width of ring blank are $63.5,38.1$ and 25.4 mm , respectively. The

Fig. 3. 3D-FE model of cold ring rolling.

Fig. 4. Configuration of mandrel.
radii of main roll and guide roll are 114.3 and 25 mm , respectively. The configuration of mandrel is shown in Fig. 4. The friction coefficient is 0.2 on the main roll-ring interface, 0.1 on the mandrel-ring interface to fill the groove well and zero on the guide roll-ring interface. The total feed amount is 13.46 mm . Because the ring and forming rolls are initially symmetric in the axial direction, it is sufficient to view the problem as symmetric in this direction, and only half part of ring blank is considered to save calculating time.

3.2 Determining the Range of \bar{f} for Modeling

In cold ring rolling process, only when the i th revolution feed amount Δh_{i} meets the following expression can the process proceed successfully [8].

$$
\begin{equation*}
\Delta h_{\text {min }_{-} i} \leq \Delta h_{i} \leq \Delta h_{\text {max }_{-} i},(i=1,2,3, \cdots, N) . \tag{9}
\end{equation*}
$$

where $\Delta h_{\text {min_ } i}$ is the permissive minimum feed amount in the i th revolution by which the material in the roll gap can entirely come into plastic deformation state, and $\Delta h_{\text {max_ } i}$ is the permissive maximum feed
amount allowing the ring blank to be nipped into the roll gap continuously in the i th revolution. They can be calculated as follows [8]:

$$
\begin{align*}
& \Delta h_{\min _{-} i}=6.55 \times 10^{-3}\left(R_{i}-r_{i}\right)^{2}\left(\frac{1}{R_{D}}+\frac{1}{R_{M}}+\frac{1}{R_{i}}-\frac{1}{r_{i}}\right), \\
& (i=1,2,3, \cdots, N) . \tag{10}\\
& \Delta h_{\max _{-i} i}=\frac{2 \beta^{2} R_{D}}{\left(1+R_{D} / R_{M}\right)^{2}}\left(1+\frac{R_{D}}{R_{M}}+\frac{R_{D}}{R_{i}}-\frac{R_{D}}{r_{i}}\right), \\
& (i=1,2,3, \cdots, N) . \tag{11}
\end{align*}
$$

For the case that the feed rate of mandrel is constant, the process can proceed successfully if the following two expressions are satisfied [8].

$$
\begin{align*}
& \Delta h_{1} \geq \Delta h_{\min _{2} 1} \tag{12}\\
& \Delta h_{N} \leq \Delta h_{\max , N} . \tag{13}
\end{align*}
$$

Combining Eqs. (4), (12) and (13), we can have

$$
\begin{equation*}
\frac{R_{D} \Delta h_{\text {min_ }}}{R_{0}} \leq \frac{f}{n_{1}} \leq \frac{R_{D} \Delta h_{\max -N}}{R_{N-1}} . \tag{14}
\end{equation*}
$$

Because $R_{N-1} \leq R_{N}$, the value of \bar{f} can be approximately determined by

$$
\begin{equation*}
\frac{R_{D} \Delta h_{\min -1}}{R_{0}} \leq \bar{f} \leq \frac{R_{D} \Delta h_{\max -N}}{R_{N}} \tag{15}
\end{equation*}
$$

When the total feed amount is 13.46 mm , the range of \bar{f} is [0.2046, 2.0314] mm/rev according to Eqs. (10), (11) and (15).

4. The interactive influences of f and n_{1} on

 T-shaped cold ring rolling process
4.1 The influence of f and n_{1} on the process when \bar{f} is changeless

4.1.1 Calculating conditions.

Here, f and n_{1} are increased proportionally to keep \bar{f} (i.e. f / n_{1}) unchanged. According to the range of \bar{f}, three cases, i.e. $\bar{f}=\{0.2413,0.4826$, $0.9652\}(\mathrm{mm} / \mathrm{rev})$, are investigated. The corresponding values of f and n_{1} are listed in Table 1 , where Al to A5 represent the five groups of values of f and n_{1} when $\bar{f}=0.2413(\mathrm{~mm} / \mathrm{rev})$, B 1 to B 5 for the case when $\bar{f}=0.4826(\mathrm{~mm} / \mathrm{rev})$ and C 1 to C 5 for the case when $\bar{f}=0.9652(\mathrm{~mm} / \mathrm{rev})$.

Table 1. Values of f and n_{1}.

Parameter	$\bar{f}=0.2413(\mathrm{~mm} / \mathrm{rev})$					$\bar{f}=0.4826(\mathrm{~mm} / \mathrm{rev})$					$\bar{f}=0.9652(\mathrm{~mm} / \mathrm{rev})$				
	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	Cl	C2	C3	C4	C 5
$f[\mathrm{~mm} / \mathrm{s}]$	0.623	0.935	1.247	1.87	2.493	0.62	0.94	1.25	1.87	2.49	0.62	0.94	1.25	1.87	2.49
$n_{1}[\mathrm{rev} / \mathrm{s}]$	2.583	3.875	5.166	7.75	10.332	1.29	1.94	2.58	3.88	5.17	0.65	0.97	1.29	1.94	2.58

Fig. 5. The definition of filling area of groove.
4.1.2 Influences of f and n_{1} on $R F, \Delta \dot{R}$, $\varphi_{i d}, S, \bar{B}$ and $F T$ when \bar{f} is unaltered
Here, $\Delta \dot{R}$ is defined as $\Delta \dot{R}=\left(R-R_{0}\right) / R_{0} \times 100 \%$, it can measure the growing degree of ring diameter; $\varphi_{\text {id }}$ is defined as $\varphi_{\text {id }}=\bar{\varepsilon}_{\text {max }}-\bar{\varepsilon}_{\text {min }}$, it can measure the inhomogeneous deformation of deformed ring; S is defined as the area of the metal filling into the groove on the section A-A at the rolling gap, as shown in Fig. 5 , it can measure the filling capability of groove; \bar{B} is defined as $\bar{B}=\left(B_{\max }+B_{\min }\right) / 2$, it can measure the metal magnitude flowing to the axial direction; $F T$ is defined as $F T=\left(B_{\text {max }}-B_{\text {min }}\right) / b_{0} \times 100 \%$, it directly reflects the quality of the end-plane of deformed ring.

The results of $R F, \Delta \dot{R}, S, \varphi_{i d}, \bar{B}$ and $F T$ in three cases above are listed in Table 2(a), (b) and (c), respectively. Here $\xi_{R F}, \xi_{\Delta \dot{R}}, \xi_{s}, \xi_{\varphi_{d}}, \xi_{\bar{B}}$ and $\xi_{F T}$ defined as follows are adopted to measure the change rates of $R F, \Delta \dot{R}, S, \varphi_{i t}, \vec{B}$ and $F T$, respectively.

$$
\begin{aligned}
& \xi_{R F}=\left(R F_{\max }-R F_{\min }\right) / R F_{\min } \times 100 \% \\
& \xi_{\Delta \dot{R}}=\Delta \dot{R}_{\max }-\Delta \dot{R}_{\min } \\
& \xi_{\varphi_{d}}=\left(\varphi_{i d \max }-\varphi_{i d \min }\right) / \varphi_{i d \min } \times 100 \% \\
& \xi_{S}=\left(S_{\max }-S_{\min }\right) / S_{\min } \times 100 \% \\
& \xi_{\vec{B}}=\left(\bar{B}_{\max }-\bar{B}_{\min }\right) / b_{0} \times 100 \% \\
& \xi_{F T}=F T_{\max }-F T_{\min }
\end{aligned}
$$

Table 2(a). The results of studying objects when $\bar{f}=0.2413$ ($\mathrm{mm} / \mathrm{rev}$).

	Al	A 2	A 3	A 4	A 5	ξ
$R F(\mathrm{KN})$	39.12	38.48	38.36	38.61	37.97	3.03%
$\Delta \dot{R}(\%)$	30.33	30.53	30.48	30.46	30.48	0.20%
$\varphi_{l d}$	2.199	2.158	2.172	2.192	2.177	1.93%
$S\left(\mathrm{~mm}^{2}\right)$	33.61	33.50	33.23	33.48	33.42	1.13%
$\bar{B}(\mathrm{~mm})$	15.27	15.24	15.22	15.44	15.32	0.86%
$F T(\%)$	28.16	28.01	28.05	28.49	28.18	0.49%

Table 2(b). The results of studying objects when $\bar{f}=0.4826$ ($\mathrm{mm} / \mathrm{rev}$).

	B1	B2	B3	B4	B5	ξ
$R F(\mathrm{KN})$	45.53	45.33	45.34	45.92	46.01	1.5%
$\Delta \dot{R}(\%)$	33.99	34.56	34.70	34.74	34.76	0.77%
$\varphi_{i d}$	1.987	1.933	1.895	1.893	1.901	4.37%
$S\left(\mathrm{~mm}^{2}\right)$	30.78	30.17	30.25	30.19	30.23	2.02%
$\bar{B}(\mathrm{~mm})$	13.24	12.76	12.67	12.66	12.73	4.25%
$F T(\%)$	26.60	24.28	24.15	24.16	23.89	4.01%

Table 2(c). The results of studying objects when $\bar{f}=0.9652$ ($\mathrm{mm} / \mathrm{rev}$).

	Cl	C 2	C 3	C 4	C 5	ξ
$R F(\mathrm{KN})$	52.24	51.79	51.95	52.53	51.94	1.43%
$\Delta \dot{R}(\%)$	37.23	37.40	37.95	38.73	38.72	1.50%
$\varphi_{i d}$	1.832	1.814	1.787	1.756	1.756	4.37%
$S\left(\mathrm{~mm}^{2}\right)$	29.32	30.06	29.69	29.16	29.85	3.22%
$\bar{B}(\mathrm{~mm})$	10.57	10.59	10.31	9.82	9.82	3.07%
$F T(\%)$	23.46	23.24	22.25	20.63	20.51	2.95%

It can be obtained that all of the change rates of $R F, \Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$ are less than 5%. So it can be considered that, whatever f and n_{1} change, $R F, \Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$ are approximately unchanged as long as \bar{f} is unaltered.

4.2 The influence of \bar{f} on the process

4.2.1 Calculation conditions.

In this paper, $\{0.2413,0.2896,0.3620,0.4826$, $0.7239,0.9652\}(\mathrm{mm} / \mathrm{rev})$ are selected as the values of \bar{f} by using the following two approaches to investigate the effects of \bar{f} on $R F, \Delta \dot{R}, \varphi_{i d}, S$, \bar{B} and $F T$.
The first approach: order $n_{1}=2.583(\mathrm{rev} / \mathrm{s})$, then select $f=\{0.623,0.748,0.935,1.247,1.870,2.493\}$ mm / s correspondingly;

The second approach: order $f=1.267(\mathrm{~mm} / \mathrm{s})$, then select $n_{1}=\{5.166,4.306,3.444,2.583,1.722,1.292\}$ (rev/s) correspondingly.

> 4.2.2 Variations of $R F, \Delta \dot{R}, S, \varphi_{i d}, \vec{B}$ and $F T$.

The variations of $R F, \Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$ with \vec{f} are illustrated in Figs. 6-11, respectively,
where the real line with hollow circle represents the first approach, while the broken line with solid circle stands for the second one. From the Figs. 6-11, it can be seen that the variational curve with \bar{f} of each object obtained by the first approach is approximately similar to that obtained by the second one. With the increase of $\bar{f}, R F$ and $\Delta \dot{R}$ increase gradually while $\varphi_{i d}, S, \bar{B}$ and $F T$ decrease rapidly first and then slowly. This is because the increase of \bar{f} results in the increase of Δh. Therefore, the deforming metal per roll time increases causing the roll force to increase. Meanwhile, with the increase of Δh, the plastic deformation zone gradually penetrates the thickness of ring, the constraint of the circumferential elongation enforced by the metal near the medium radius decreases. Thus, $\Delta \dot{R}$ increases while $\varphi_{i d}, S, \vec{B}$ and $F T$ decrease. When Δh increases to the value at which the plastic deformation zone has already penetrated thoroughly through the thickness of ring, the metal in the roll gap deforms very uniformly, so $\Delta \dot{R}, \varphi_{i t}, S, \bar{B}$ and $F T$ change slowly with the increase of Δh, especially for S.
From Figs. 6-11, it can also be seen that the

Fig. 6. Variation of roll force.

Fig. 9. Variation of filling area.

Fig. 7. Variation of growth rate of outer d iameter.

Fig. 10. Variation of side spread.

Fig. 8. Variation of degree of inhomogeneous deformation.

Fig. 11. Variation of fishtail coefficient.

Fig. 12. Definition for $p_{\text {max }}$ and $w_{\text {max }}$.
differences between the two curves of each object among $R F, \Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$ are very little when \bar{f} is less than $0.4826 \mathrm{~mm} / \mathrm{rev}$; but when \bar{f} exceeds $0.4826 \mathrm{~mm} / \mathrm{rev}$, the difference increases gradually if \bar{f} increased continuously. In this paper, $\zeta=p_{\text {max }} / w_{\text {max }}$ is adopted to measure the discrepancy between two curves in the same coordinate system, where $p_{\text {max }}$ and $w_{\text {max }}$ are shown in Fig. 12, and their definitions are as follows:

$$
\begin{aligned}
p_{\max }= & \max \left\{\mid y_{1}(\bar{f})-y_{2}(\bar{f})\right\} \\
w_{\max }= & \min \left\{\left[\max \left(y_{1}(\bar{f})-\min \left(y_{1}(\bar{f})\right)\right],\right.\right. \\
& {\left[\max \left(y_{2}(\bar{f})-\min \left(y_{2}(\bar{f})\right)\right]\right\}, \vec{f} \in\left[\overline{f_{1}}, \overline{f_{2}}\right] . }
\end{aligned}
$$

where $y_{1}(\bar{f})$ and $y_{2}(\bar{f})$ are the curves changing with \bar{f}, the subscript 1 represents that \bar{f} is changed by f and subscript 2 represents that \bar{f} is changed by n_{1}. The ζ of $R F, \Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$ are $5.97 \%, 8.26 \%, 7.41 \%, 8.60 \%, 6.80 \%$ and 7.65%, respectively. Thus it can be considered that the two curves of each object are approximately similar. It can be concluded that increasing (decreasing) f or decreasing (increasing) n_{1} can achieve the identical effect in the cold ring rolling process.

5. Conclusions

The interactive influences f and n_{1} on $R F, \Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$ in T-shaped cold
ring rolling process are revealed. The following conclusions can be drawn.
(1) Whatever f and n_{1} change, $R F, \Delta \dot{R}, \varphi_{i d}$, S, \bar{B} and $F T$ are nearly unchanged under the condition that \bar{f} is changeless;
(2) The variational curve of $R F$ changing with \bar{f} when \bar{f} is changed by f is approximately the same as the one when \bar{f} is changed by n_{1}, so are $\Delta \dot{R}, \varphi_{i d}, S, \bar{B}$ and $F T$. Thus, by increasing (decreasing) f or decreasing (increasing) n_{1}, the identical effect can be obtained in the process;
(3) The increase of \bar{f} is favourable to the growth of $\Delta \dot{R}$ and the restriction of $\varphi_{i d}, \bar{B}$ and $F T$, but it causes $R F$ to increase and S to decrease.

Acknowledgements

The authors wish to thank the Natural Science Foundation for Key Program of China (No. 50335060) and the Natural Science Foundation of China for Distinguished Young Scholars (No. 50225518) for the support given to this research.

Nomenclature

$\Delta h \quad:$ feed amount per revolution of ring
$\Delta h_{i}, \Delta t_{i} \quad$: thickness reduction and roll time in the i th revolution of ring
$R_{i}, r_{i}, H_{i} \quad$: outer, inner radii and thickness of ring in the ith revolution of ring, respectively
$R_{0}, r_{0}, H_{0} b_{0}$: outer radius, inner radius, thickness and axial width of ring blank, respectively
$v_{R}, v_{D} \quad:$ linear velocity of the outer circle of ring blank and main roll, respectively
R_{M}, R_{D}, R : radius of mandrel, main roll and deformed ring, respectively
$f, n_{1} \quad$: feed rate of mandrel and rotational speed of main roll, respectively
$\bar{f} \quad:$ the ration of feed rate of mandrel to rotational speed of main roll
$\beta \quad:$ friction angle
$R F, S$: roll force and filling area of groove, respectively
$\varphi_{i d}, \Delta \dot{R} \quad$: degree of inhomogeneous deformation and growth rate of radius, respectively
$\bar{B}, F T$: average side spread and fishtail coefficient of deformed ring, respectively
$B_{\text {max }}, B_{\text {min }}$: maximum and minimum axial side spread of deformed ring, respectively
$\bar{\varepsilon}_{\text {max }}, \bar{\varepsilon}_{\text {min }} \quad:$ maximum and minimum equivalent plastic strain of deformed ring, respectively

Reference

[1] A. G. Mamalis, J. B. Hawkyard, Johnson, Spread and flow patterns in ring-rolling, Int. J. Mech. Sci. 18(1).(1976) 11-16.
[2] J. B. Hawkyard, W. Johnson, J. Kirkland, E. Appleton, Analyses for roll force and torque in ring rolling with some supporting experiments, Int. J. Mech. Sci. 15 (1973) 873-893.
[3] C. F. Lugora and A. N. Bramley, Analysis of spread in ring-rolling. Int. J. Mech. Sci. 29 (1987) 149-157.
[4] N. Kim, S. Machida, S. Kobayashi, Ring rolling process simulation by the three dimensional finite
element method. Int. J. Mach. Tools Manuf. 30 (1990) 569-577.
[5] L. G Guo, H. Yang and M. Zhan, Research on plastic deformation behaviour in cold ring rolling by FEM numerical simulation, Modelling Simul. Mater. Sci. and Eng. 13 (2005) 1029-1046.
[6] H. Yang, L. G Guo, M. Zhan and Z. C. Sun, Research on the influence of material properties on cold ring rolling process by 3D-FE numerical simulation, J. Mater. Process. Technol. 177 (2006) 634-638.
[7] Z. W. Wang, S. Q. Zeng, X. H. Yang and C. Cheng, The key technology and realization of virtual ring rolling, J. Mater. Process. Technol. 182 (2007) 374381.
[8] L. Hua, X. G. Huang and C. D. Zhu, Theory and Technology of the Ring Rolling. China Mechanical Industry Press, Beijing, (2001).
[9] L. Y. Li, H. Yang, L. G Guo and Z. C. Sun, A Control Method of Guide Rolls in 3D-FE Simulation of Ring Rolling. J. Mater. Process. Technol. (accepted).

[^0]: *Corresponding author. Tel.: +8629884 95632, Fax.: +862988495632
 E-mail address: lanyun7810@126.com

